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Abstract

The numerical accuracy of the Interpolated Differential Operator (IDO) scheme is studied with Fourier analysis for the
solutions of Partial Differential Equations (PDEs): advection, diffusion, and Poisson equations. The IDO scheme solves
governing equations not only for physical variable but also for first-order spatial derivative. Spatial discretizations are
based on Hermite interpolation functions with both of them. In the Fourier analysis for the IDO scheme, the Fourier coef-
ficients of the physical variable and the first-order derivative are coupled by the equations derived from the governing
equations. The analysis shows the IDO scheme resolves all the wavenumbers with higher accuracy than the fourth-order
Finite Difference (FD) and Compact Difference (CD) schemes for advection equation. In particular, for high wavenum-
bers, the accuracy is superior to that of the sixth-order Combined Compact Difference (CCD) scheme. The diffusion
and Poisson equations are also more accurately solved in comparison with the FD and CD schemes. These results show
that the IDO scheme guarantees highly resolved solutions for all the terms of fluid flow equations.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

A great number of numerical schemes have been developed for solving Partial Differential Equations
(PDEs). Numerical calculations must solve accurately all the wave scales corresponding to the solution of
PDE. Most numerical schemes show to converge to the PDE solution by reducing grid spacing, but computer
resources such as memory and CPU time are limited. In many cases, a range of wavenumber resolved on given
meshes results to be critical.

The spectral method [1] gives the most accurate solutions, and have been used for Direct Numerical Sim-
ulation (DNS) of turbulence [2,3]. The application of the spectral method is, however, limited to flows with
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periodic boundary conditions, and is not suitable for the steep gradient profiles describing discontinuity within
the assigned wavenumber. Finite Difference (FD) schemes used on spatial grid points are easily applied to
complex boundaries with less computational cost. The most familiar discretization methods are the first-order
forward or backward difference and the second-order central difference. The first- and the second-order deriv-
atives of PDEs are represented by linear combinations of the variables of two or three grid points. Although
the calculation of such simple FD scheme has been used for various analysis, very small grid spacing is often
required to compensate the low accuracy of the methods.

The classical approach to construct higher-order scheme is to introduce additional grid points in the
discretization, that is, the use of five grid point variables makes a fourth-order representation of the first-
order derivative, and sixth-order discretization is obtained by referring to seven grid points. These non-
compact schemes can therefore present difficulties in dealing with boundary conditions, and furthermore
a range of the resolved wavenumber is still narrow. It would be desirable in this regard to develop higher-
order schemes based on different approaches. The standard Padê scheme is one example of these approaches.
Lele generalized the standard Padê scheme as the Compact finite Difference (CD) scheme [4], and showed
that the CD scheme possesses higher resolution than the conventional FD schemes. Another approach that
should be mentioned is the Cubic Interpolated Propagation/Constrained Interpolation Profile (CIP)
scheme, which is a Semi-Lagrangian hyperbolic equation solver [5,6]. Multi-moments, i.e. not only physical
variables but also first-order derivatives, are time integrated as dependent variables, and the spatial profiles
of the variables are approximated by the Hermite interpolation function. Utsumi et al. [7] showed that
the CIP scheme produces less dissipative solution with smaller phase error than the conventional
schemes for advection calculations. The CIP scheme has been extended to the Conservative Semi-
Lagrangian (CIP–CSL) scheme [8,9], the Finite Volume formulation (CIP–FVM) [10], the Basis Set
(CIP–BS) scheme [11], and the CIP method of Characteristics [12]. In almost all the CIP type schemes,
a fractional steps method is introduced for fluid flow simulations, where advection term is solved by
the semi-Lagrange way with high accuracy and non-advection term is advanced with the second-order
FD scheme.

We have developed the Interpolated Differential Operator (IDO) scheme [13] which is a multi-moment
Eulerian scheme. The IDO scheme solves the given PDE straightforwardly, without fractional steps method,
and extracts full performance of the Hermite interpolation function constructed by physical variables and
first-order derivatives. The major difference between the CD scheme and the IDO scheme is the calculation
for the first-order derivatives. While in the CD scheme derivatives at each grid point are implicitly given by
the relation matrix to neighboring grid points, the first-order derivatives of the IDO scheme are given as
the solution of additional equations derived from governing equations.

The IDO scheme has shown promising results in compressible and incompressible fluid flow problems, in
comparison with existing schemes [14,15]. The approximately comparable result has been achieved to that of
spectral methods for DNS of homogeneous isotropic turbulence [16]. However, the detailed accuracy and sta-
bility of the IDO scheme still remains unclear.

In this paper, we present the accuracy and stability of the IDO scheme by using Fourier analysis. The anal-
ysis for the solution of advection, diffusion, and Poisson equations shows that the IDO scheme has higher
resolution characteristics than the FD and CD schemes.
2. Review of the IDO scheme

2.1. Spatial discretization

In the IDO scheme, the physical variable f and its first-order spatial derivative fx are defined at a grid point j

as fj and fx,j in the case of one-dimensional computational domain of 0 = x0 < x1 < � � � < xj�1 < xj <
xj+1 < � � � <xN�1 < xN = L. Owing to the first-order derivative of an additional dependent variable, we solve
the additional equation derived by differentiating the given PDE. The higher-order derivatives
fxx(x), fxxx(x), . . . of the PDE are represented as fxx(x) = Fxx(x), fxxx(x) = Fxxx(x), . . . by using the Hermite
interpolation function F(x), which is constructed by both the physical variables and the first-order derivatives.
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Two kinds of interpolation functions, covering different domains, are selectively applied. One interpolation
function is a fifth-order polynomial covering the local area from grid point j � 1 to j + 1,
F ðX Þ ¼ aX 5 þ bX 4 þ cX 3 þ dX 2 þ fx;jX þ fj; ð2:1Þ
where X = x � xj. The coefficients of the interpolation function are determined by the constraints of F(hp) =
fj+1, Fx(hp) = fx,j+1, F(�hm) = fj�1, and Fx(�hm) = fx,j�1, where hp = xj+1 � xj and hm = xj � xj�1. In the case
of an uniform grid spacing hp = hm = L/N = h, spatial derivatives at the grid point j are represented by the
following expressions:
fxxðxjÞ ¼
2

h2
ðfjþ1 � 2f j þ fj�1Þ �

1

2h
ðfx;jþ1 � fx;j�1Þ; ð2:2Þ

fxxxðxjÞ ¼
15

2h3
ðfjþ1 � fj�1Þ �

3

2h2
ðfx;jþ1 þ 8f x;j þ fx;j�1Þ; ð2:3Þ

fxxxxðxjÞ ¼ �
12

h4
ðfjþ1 � 2f j þ fj�1Þ þ

6

h3
ðfx;jþ1 � fx;j�1Þ; ð2:4Þ

fxxxxxðxjÞ ¼ �
90

h5
ðfjþ1 � fj�1Þ þ

30

h4
ðfx;jþ1 þ 4f x;j þ fx;j�1Þ. ð2:5Þ
A different interpolation function, called upwind interpolation function, is often applied to the advection
term of fluid equations for numerical stability. In the same manner of the CIP scheme, the third-order
polynomial,
F ðX Þ ¼ aX 3 þ bX 2 þ fx;jX þ fj; ð2:6Þ
is used to cover the one-cell in the upwind direction. Using the constraints F(h 0) = fjup and Fx(h 0) = fx,jup, deriv-
atives at the grid point j are obtained as
fxxðxjÞ ¼ �
6

h02
ðfj � fjupÞ �

2

h0
ð2f x;j þ fx;jupÞ; ð2:7Þ

fxxxðxjÞ ¼
12

h03
ðfj � fjupÞ þ

6

h0
2 ðfx;j þ fx;jupÞ; ð2:8Þ
where X = x � xj, h 0 = xjup � xj, jup = j � u/juj, u represents advection velocity.

2.2. Time integration

In order to demonstrate time integration method, we consider the following PDE in time and space:
ft ¼ uðf ; fx; fxx; fxxx; . . .Þ; ð2:9Þ

where the subscript t denotes the time derivative. We solve the additional equation derived by differentiating
Eq. (2.9) for time integrating the first-order derivative:
ftx ¼ uxðf ; fx; fxx; fxxx; . . .Þ. ð2:10Þ

Both the equations are simultaneously time integrated. The Runge–Kutta time integration method is usually
adopted in the IDO scheme to retain high-order accuracy in time. The detailed expressions to integrate Eqs.
(2.9) and (2.10) are as follows:
kp
j ¼ uðf pðxjÞ; f p

x ðxjÞ; f p
xxðxjÞ; f p

xxxðxjÞ; . . .Þ; ð2:11Þ
kp

x;j ¼ uxðf pðxjÞ; f p
x ðxjÞ; f p

xxðxjÞ; f p
xxxðxjÞ; . . .Þ; ð2:12Þ

f p
j ¼ f n

j þ
X

q

apqkq
j Dt; ð2:13Þ

f p
x;j ¼ f n

x;j þ
X

q

apqkq
x;jDt; ð2:14Þ
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f nþ1
j ¼ f n

j þ
X

p

bpkp
j Dt; ð2:15Þ

f nþ1
x;j ¼ f n

x;j þ
X

p

bpkp
x;jDt; ð2:16Þ
where kp is the time derivatives in the stage number p of the Runge–Kutta method, apq and bp are weighted
coefficients, and n is the time step index. The spatial derivatives in Eqs. (2.11) and (2.12) are represented by
linear combinations of the set ðf p

j�1; f
p
j ; f

p
jþ1; f

p
x;j�1; f

p
x;j; f

p
jþ1Þ through the derivative approximations (2.2)–

(2.5), (2.7) and (2.8). In this paper, the following coefficients of apq and bp are used:

For the one-stage method, being identical to the first-order finite difference in time:
p ¼ 1; a11 ¼ 0; b1 ¼ 1. ð2:17Þ

For the two-stage method:
p ¼ 1; 2;
a11 a12

a21 a22

� �
¼

0 0

1 0

� �
;

b1

b2

� �
¼

1=2

1=2

� �
. ð2:18Þ
For the three-stage method:
p ¼ 1; 2; 3;

a11 a12 a13

a21 a22 a23

a31 a32 a33

0
B@

1
CA ¼

0 0 0

2=3 0 0

0 2=3 0

0
B@

1
CA;

b1

b2

b3

0
B@

1
CA ¼

1=4

3=8

3=8

0
B@

1
CA. ð2:19Þ
For the four-stage method:
p ¼ 1; 2; 3; 4;

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

0
BBB@

1
CCCA ¼

0 0 0 0

1=2 0 0 0

0 1=2 0 0

0 0 1 0

0
BBB@

1
CCCA;

b1

b2

b3

b4

0
BBB@

1
CCCA ¼

1=6

1=3

1=3

1=6

0
BBB@

1
CCCA. ð2:20Þ
3. Fourier analysis for the IDO scheme

3.1. Spatial derivatives in Fourier analysis

When the spatial profile of a dependent variable f(x) is periodic over the domain [0, L] with an uniform grid
spacing h = L/N, the dependent variable is decomposed into Fourier series,
f ðxÞ ¼
X

k

f̂ ðkÞeiwx=h; ð3:1Þ
where i ¼
ffiffiffiffiffiffiffi
�1
p

, and w = 2pkh/L is a scaled wavenumber. In the IDO scheme, first-order derivative is solved
independently, and the spatial profile of the first-order derivative is defined as
fxðxÞ ¼
X

k

f̂ xðkÞeiwx=h. ð3:2Þ
The physical variable and the first-order derivative at a grid point j and those of grid points j ± 1 are given by
fj ¼ f ðxjÞ ¼
X

k

f̂ ðkÞeiwxj=h; ð3:3Þ

fx;j ¼ fxðxjÞ ¼
X

k

f̂ xðkÞeiwxj=h; ð3:4Þ

fj�1 ¼ f ðxj � hÞ ¼
X

k

f̂ ðkÞeiwxj=he�iw; ð3:5Þ



Y. Imai, T. Aoki / Journal of Computational Physics 217 (2006) 453–472 457
fx;j�1 ¼ fxðxj � hÞ ¼
X

k

f̂ xðkÞeiwxj=he�iw. ð3:6Þ
Substituting Eqs. (3.3)–(3.6) into the derivative approximations (2.2)–(2.5) of the fifth-order central interpo-
lation function, we derive the mth-order derivatives represented by the Fourier series:
fðmÞðxjÞ ¼
X

k

f̂ ðmÞðkÞeiwxj=h ¼
X

k

AðmÞðwÞf̂ ðkÞeiwxj=h þ
X

k

A0ðmÞðwÞf̂ xðkÞeiwxj=h; ð3:7Þ
where A(m) and A0ðmÞ are determined as follows:

For the second-order derivative:
Að2ÞðwÞ ¼ 4
cos w� 1

h2
; A0ð2ÞðwÞ ¼ �i

sin w
h

. ð3:8Þ
For the third-order derivative:
Að3ÞðwÞ ¼ 15i
sin w

h3
; A0ð3ÞðwÞ ¼ �3

cos wþ 4

h2
. ð3:9Þ
For the fourth-order derivative:
Að4ÞðwÞ ¼ �24
cos w� 1

h4
; A0ð4ÞðwÞ ¼ 12i

sin w

h3
. ð3:10Þ
For the fifth-order derivative:
Að5ÞðwÞ ¼ �180i
sin w

h5
; A0ð5ÞðwÞ ¼ 60

cos wþ 2

h4
. ð3:11Þ
In the case of derivative approximations (2.7) and (2.8) of the third-order upwind interpolation function, they
are represented by

For the second-order derivative:
Að2ÞðwÞ ¼ 6
eiw � 1

h2
; A0ð2ÞðwÞ ¼ �2

eiw þ 2

h
. ð3:12Þ
For the third-order derivative:
Að3ÞðwÞ ¼ �12
eiw � 1

h3
; A0ð3ÞðwÞ ¼ 6

eiw þ 1

h2
; ð3:13Þ
where advection velocity is a negative constant.

3.2. Time integration in Fourier analysis

We derive the general analysis method for the IDO scheme in solving a linear time dependent PDE,
ft ¼ uðf ; fx; fxx; fxxx; . . . ; fðmÞÞ ¼ u0f þ u1fx þ u2fxx þ u3fxxx þ � � � þ uðmÞfðmÞ; ð3:14Þ
and its differentiated equation,
ftx ¼ uxðf ; fx; fxx; fxxx; . . . ; fðmÞÞ ¼ u0fx þ u1fxx þ u2fxxx þ u3fxxxx þ � � � þ uðmÞfðmþ1Þ. ð3:15Þ
The time derivatives at a grid point j in the pth stage of Runge–Kutta time integration are defined as
kn;p
j ¼ u0f n;pðxjÞ þ u1f n;p

x ðxjÞ þ u2f n;p
xx ðxjÞ þ � � � þ uðmÞf

n;p
ðmÞðxjÞ; ð3:16Þ

kn;p
x;j ¼ u0f n;p

x ðxjÞ þ u1f n;p
xx ðxjÞ þ u2f n;p

xxx ðxjÞ þ � � � þ uðmÞf
n;p
ðmþ1ÞðxjÞ; ð3:17Þ
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where the notation n is the time step index. We assume the spatial profiles of the time derivatives to be
kn;p
j ¼

X
k

f̂ n;p
t ðkÞeiwxj=h; ð3:18Þ
and
kn;p
x;j ¼

X
k

f̂ n;p
tx ðkÞeiwxj=h. ð3:19Þ
Substituting Eqs. (3.18) and (3.19) into Eqs. (3.16) and (3.17) and using the derivative approximations (3.7),
we have
f̂ n;p
t ðkÞ ¼ ðu0 þ u2Að2ÞðwÞ þ u3Að3ÞðwÞ þ � � � þ umAðmÞðwÞÞf̂ n;pðkÞ

þ ðu1 þ u2A0ð2ÞðwÞ þ u3A0ð3ÞðwÞ þ � � � þ umA0ðmÞðwÞÞf̂ n;p
x ðkÞ; ð3:20Þ

f̂ n;p
tx ðkÞ ¼ ðu1Að2ÞðwÞ þ u2Að3ÞðwÞ þ � � � þ umAðmþ1ÞðwÞÞf̂ n;pðkÞ

þ ðu0 þ u1A02ðwÞ þ u2A03ðwÞ þ � � � þ umA0ðmþ1ÞðwÞÞf̂ n;p
x ðkÞ. ð3:21Þ
Eqs. (3.20) and (3.21) are rewritten by the matrix form of
Dn;p ¼ AFn;p; ð3:22Þ
where
Dn;p ¼
f̂ n;p

t ðkÞ
f̂ n;p

tx ðkÞ

 !
; ð3:23Þ

A ¼
u0 þ

Pm
m¼2

umAðmÞðwÞ u1 þ
Pm
m¼2

umA0ðmÞðwÞ

Pm
m¼1

umAðmþ1ÞðwÞ u0 þ
Pm
m¼1

umA0ðmþ1ÞðwÞ

0
BB@

1
CCA ¼ A11ðwÞ A12ðwÞ

A21ðwÞ A22ðwÞ

� �
; ð3:24Þ

Fn;p ¼
f̂ n;pðkÞ
f̂ n;p

x ðkÞ

 !
. ð3:25Þ
Eqs. (2.13) and (2.14) lead to
Fn;p ¼ Fn þ Dt
X

q

apqDn;q; ð3:26Þ
where
Fn ¼
f̂ nðkÞ
f̂ n

xðkÞ

 !
. ð3:27Þ
Substituting Eq. (3.26) into Eq. (3.22), we have
PQ ¼ R; ð3:28Þ

where
P ¼

P11 P12 � � P1p

P21 P22 � � �
� � � � �
� � � Pp�1p�1 Pp�1p

Pp1 � � Ppp�1 Ppp

0
BBBBBB@

1
CCCCCCA
; Ppq ¼

1� DtapqA ðp ¼ qÞ;
�DtapqA ðp 6¼ qÞ;

�
ð3:29Þ
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Q ¼

Dn;1

Dn;2

�
�

Dn;p

0
BBBBBB@

1
CCCCCCA
; ð3:30Þ

R ¼

AFn

AFn

�
�

AFn

0
BBBBBB@

1
CCCCCCA

. ð3:31Þ
From P�1PQ = Q = P�1R, the Fourier coefficients of time derivatives can be written as the function of the
physical variables and the first-order derivatives at nth time step:
Dn;p ¼ BpAFn; ð3:32Þ

where
Bp ¼
X

q

Cpq; ð3:33Þ
and Cpq is the component of the set (p, q) in the matrix P�1. Eqs. (2.15) and (2.16) lead to
Fnþ1 ¼ Fn þ Dt
X

p

bpDn;p. ð3:34Þ
From Eqs. (3.32) and (3.34), the Runge–Kutta time integration of the IDO scheme are derived:
Fnþ1 ¼ SFn; ð3:35Þ

where
S ¼ Iþ DtA
X

p

bpBp ¼
S11ðwÞ S12ðwÞ
S21ðwÞ S22ðwÞ

� �
. ð3:36Þ
The matrix S is determined as follows:

For the one-stage method:
S11 ¼ 1þ A11; S12 ¼ A12; S21 ¼ A21; S22 ¼ 1þ A22. ð3:37Þ

For the two-stage method:
S11 ¼ 1þ A11 þ
A2

11

2
þ A12A21

2
; S12 ¼ A12 þ

A11A12

2
þ A12A22

2
;

S21 ¼ A21 þ
A11A21

2
þ A21A22

2
; S22 ¼ 1þ A22 þ

A2
22

2
þ A12A21

2
.

ð3:38Þ
For the three-stage method:
S11 ¼ 1þ A11 þ
A2

11

2
þ A3

11

6
þ A12A21

2
þ A11A12A21

3
þ A12A21A22

6
;

S12 ¼ A12 þ
A11A12

2
þ A2

11A12

6
þ A11A12A22

6
þ A12A22

2
þ A12A2

22

6
þ A2

12A21

6
;

S21 ¼ A21 þ
A21A22

2
þ A21A2

22

6
þ A11A21A22

6
þ A11A21

2
þ A2

11A21

6
þ A12A2

21

6
;

S22 ¼ 1þ A22 þ
A2

22

2
þ A3

22

6
þ A12A21

2
þ A12A21A22

3
þ A11A12A21

6
.

ð3:39Þ
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For the four-stage method:
S11 ¼ 1þ A11 þ
A2

11

2
þ A3

11

6
þ A4

11

24
þ A12A21

2
þ A11A12A21

3
þ A2

11A12A21

8

þ A12A21A22

6
þ A12A21A2

22

24
þ A11A12A21A22

12
þ A2

12A2
21

24
;

S12 ¼ A12 þ
A11A12

2
þ A2

11A12

6
þ A3

11A12

24
þ A11A12A22

6
þ A2

11A12A22

24
þ A11A12A2

22

24
þ A11A2

12A21

12

þ A12A22

2
þ A12A2

22

6
þ A12A3

22

24
þ A2

12A21

6
þ A2

12A21A22

12
;

S21 ¼ A21 þ
A21A22

2
þ A21A2

22

6
þ A21A3

22

24
þ A11A21A22

6
þ A11A21A2

22

24

þ A2
11A21A22

24
þ A12A2

21A22

12
þ A11A21

2
þ A2

11A21

6
þ A3

11A21

24
þ A12A2

21

6
þ A11A12A2

21

12
;

S22 ¼ 1þ A22 þ
A2

22

2
þ A3

22

6
þ A4

22

24
þ A12A21

2
þ A12A21A22

3
þ A12A21A2

22

8
þ A11A12A21

6

þ A2
11A12A21

24
þ A11A12A21A22

12
þ A2

12A2
21

24
;

ð3:40Þ
where Aij is AijDt. We obtain the matrix at nth time step from Eq. (3.35) as
Fn ¼ SFn�1 ¼ S2Fn�2 ¼ � � � ¼ SnF0. ð3:41Þ

Eigenvalues and eigenvectors for the coefficient matrix S are defined as k± and K±. Using k± and K±, we have
Fn ¼ L
kþ 0

0 k�

� �n

L�1F0; ð3:42Þ
where L = (K+K�) and LL�1 = I.

4. Accuracy for advection equation

The one-dimensional advection equation with a negative constant velocity is considered:
of
ot
¼ �u

of
ox

. ð4:1Þ
Eq. (4.1) is obtained substituting u1 = �u and the other coefficients u(m) = 0 into Eq. (3.14). The IDO scheme
solves the additional equation,
o2f
otox

¼ �u
o2f
ox2

; ð4:2Þ
for the time integration of first-order derivatives.
4.1. The fifth-order central IDO scheme

The coefficient matrix A (3.24) of the IDO scheme with the fifth-order central interpolation function (2.1)
(the fifth-order central IDO scheme) is given by
A11 A12

A21 A22

� �
¼

0 �u

�uAð2Þ �uA0ð2Þ

 !
¼

0 Ch
Dt

4C
hDt ðcos w� 1Þ �i C

Dt sin w

 !
; ð4:3Þ
where C = jujDt/h denotes the Courant number and Eq. (3.8) is used.
In order to obtain stable time integration, the absolute values of both the eigenvalues jk±j in Eq. (3.42)

should be less than unity for all the wavenumbers and the given Courant number. The contour plots of the
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eigenvalue jkj = max(jk+j, jk�j) for the first-order time integration are shown in Fig. 1(a). The horizontal axis
means the wavenumber and the vertical axis is the Courant number. For almost all the Courant numbers, the
eigenvalues are larger than unity. The first-order explicit time integration of the IDO scheme is found to be
unstable. The eigenvalues for the two-, the three-, and the four-stage Runge–Kutta time integration are illus-
trated in Fig. 1(b)–(d). The two-stage Runge–Kutta method still has a large unstable area. By using the three-
stage or the four-stage method, we can greatly enlarge the stable area for the advection calculation. The stable
Courant number for the three-stage method is estimated to be C < 0.55, and that of the four-stage method is
C < 0.94.

In order to estimate dispersion error and dissipation error for the solution, we define an amplification factor
at nth time step to the initial time step:
Fig. 1
integra
gnðwÞ ¼ jgnðwÞjeianðwÞ ¼ f̂ nðkÞ
f̂ 0ðkÞ

; ð4:4Þ
where jgnj and an represent gain and phase, respectively. The exact solution of the gain are unity, and the exact
phase is an = Cwn.

We examine the phase for various central schemes, which include the IDO scheme, the second-, the fourth-,
and the sixth-order central FD schemes, the fourth-order CD scheme, and the sixth-order Combined
CD (CCD) scheme [17], with the four-stage Runge–Kutta time integration. Only for the initial time step,
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. Contour plots of eigenvalues of the fifth-order central IDO scheme for the advection equation: (a) first-order explicit time
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the relation of f̂ 0
xðkÞ ¼ iw=hf̂ 0ðkÞ is used for the IDO scheme. Fig. 2(a), (b), and (c) show the phases for

Cn = 100 with the Courant numbers 0.1, 0.2, and 0.4, respectively. When we use N = 100 grid points, the ini-
tial profile propagates from x = xj to x = xj + L for Cn = 100. In these figures, the phases are normalized as
�a ¼ an=Cn. Significant differences could not be seen between these Courant numbers. The phases for the fifth-
order central IDO scheme follow the exact solution more closely than the other schemes for a wide range of
the wavenumber. The phase error, defined by
Fig. 2.
P E ¼
w� �a

w

����
����; ð4:5Þ
for the Courant number 0.1 is plotted in Fig. 3. The phase error for the IDO scheme has fourth-order con-
vergence for the wavenumber. It should be noted that the IDO scheme can resolve high wavenumbers more
accurately than the CCD scheme. The range of the resolved wavenumber with PE < 1% is estimated as
w < 1.86 for the IDO scheme, and that of the CCD scheme is w < 1.80. From Fig. 4, the gains for these central
schemes are unity for all the wavenumbers. The central IDO scheme provides less-dispersive and non-dissipa-
tive solution for all the wavenumbers, and we can therefore obtain spectral-like results for DNS of turbulence
[16]. For wavenumbers near w = p, the phase error becomes non-negligible even in the IDO scheme, and this
causes non-physical oscillations. The central schemes need the presence of physical viscosity or additional
numerical viscosity for stable computation of the flow including such wavenumbers.
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4.2. The third-order upwind IDO scheme

Since the advection equation has only one characteristics of PDE, the upwind interpolation function (2.6)
can be applied. The coefficient matrix A (3.24) for the IDO scheme with the upwind interpolation function (the
third-order upwind IDO scheme) are described as
A11 A12

A21 A22

� �
¼

0 Ch
Dt

6C
hDt ðeiw � 1Þ � 2C

Dt ðeiw þ 2Þ

 !
; ð4:6Þ
where Eq. (3.12) is used.
The eigenvalues of the third-order upwind IDO scheme for the first-order explicit time integration and for

the two-, the three-, and the four-stage Runge–Kutta time integration are illustrated in Fig. 5. The increased
stability deriving from the higher-order Runge–Kutta method can be confirmed. The solution with the four-
stage Runge–Kutta method is found to be stable for the Courant number C < 0.46.

The phases �a ¼ an=Cn for the third-order upwind IDO scheme with the Courant numbers 0.1, 0.2, and
0.4 are shown in Fig. 6. As references, the phases for the first-, and the third-order upwind FD schemes, for
the CIP scheme, and for the Cubic Lagrange (CUL) scheme are shown. The four-stage Runge–Kutta
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method is used for the time integration of the IDO scheme and the FD schemes. The upwind IDO scheme
and the CIP scheme can resolve higher wavenumbers than the upwind FD schemes and the CUL scheme.
Fig. 6 also presents the phase for the seventh-order upwind IDO scheme, where the seventh-order interpo-
lation function, covering the domain from grid point j � 1 to j + 2, is adopted. The seventh-order IDO
scheme provides the approximately equal phase to the exact one for all the wavenumbers. Fig. 7 gives
the phase error estimated by Eq. (4.5). The third-order IDO scheme has fourth-order accuracy and the sev-
enth-order IDO scheme has 6.5th order. The third-order upwind IDO scheme resolves a wavenumber of
w < 1.43 with an error of PE < 1%. Note that even for w = p, the error for the seventh-order IDO scheme
is estimated as 0.88%.

Fig. 8 presents the normalized gains, �g ¼ jgnj
1

Cn, for these schemes with the Courant numbers 0.1, 0.2 and
0.4. The gains of the upwind schemes are less than unity for the entire region of the wavenumber. Since the
gains of the upwind IDO scheme and the CIP scheme are closer to unity than the other upwind schemes, less
dissipative solutions are achieved by using these schemes. The gain error,
GE ¼ j1� �g
1
wj; ð4:7Þ
is given in Fig. 9, where the Courant number is 0.1. According to the figure, the gain error for the CIP scheme
and the third-order upwind IDO scheme are of fourth-order, and that of the seventh-order IDO scheme is
6.4th order.
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4.3. Numerical viscosity in the upwind IDO scheme

It is well known that the first-order upwind FD consists of the first- and the second-order derivatives of the
second-order central FD. The derivatives (2.7) and (2.8) of the third-order upwind interpolation function can
be expressed by the derivatives (2.2)–(2.5) of the fifth-order central interpolation function. The second-order
derivative (2.7) is assumed to be
f upwind
xx ðxjÞ ¼

X5

m¼0

mðmÞf central
ðmÞ ðxjÞ. ð4:8Þ
Substituting the physical variable and the derivatives of each interpolation function into f upwind
xx and f central

ðmÞ , we
have
0 0 2=h2 15=2h3 �12=h4 �90=h5

1 0 �4=h2 0 24=h4 0

0 0 2=h2 �15=2h3 �12=h4 90=h5

0 0 �1=2h �3=2h2 6=h3 30=h4

0 1 0 �12=h2 0 120=h4

0 0 1=2h �3=2h2 �6=h3 30=h4

0
BBBBBBBB@

1
CCCCCCCCA

m0

m1

m2

m3

m4

m5

0
BBBBBBBB@

1
CCCCCCCCA
¼

6x=h0
2

�6=h02

6ð1� xÞ=h0
2

�2x=h0

�4=h0

�2ð1� xÞ=h0

0
BBBBBBBBB@

1
CCCCCCCCCA
; ð4:9Þ
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where x = 1 as u < 0, and x = 0 as u > 0. Using h 0 = h as u < 0 and h 0 = �h as u > 0, the coefficients are
derived to
m0

m1

m2

m3

m4

m5

0
BBBBBBBB@

1
CCCCCCCCA
¼

0

0

1

0

�h02=12

�h03=30

0
BBBBBBBB@

1
CCCCCCCCA

. ð4:10Þ
Similarly, the third-order derivative (2.8) is expressed as
f upwind
xxx ðxjÞ ¼

X5

m¼0

jðmÞf central
ðmÞ ðxjÞ; ð4:11Þ

j0

j1

j2

j3

j4

j5

0
BBBBBBBB@

1
CCCCCCCCA
¼

0

0

0

1

h0=2

3h02=20

0
BBBBBBBB@

1
CCCCCCCCA

. ð4:12Þ
From these expressions, it is found that the upwind interpolation function (2.6) includes the numerical viscos-
ity terms of the fourth- and the fifth-order derivatives. The numerical viscosity contributes to stabilize the solu-
tion for high wavenumbers. We can improve the CIP scheme and the upwind IDO scheme by adjusting the
coefficients m and j.

As an example, the phase and the gain for an improved IDO scheme with the Courant number 0.2 are
described in Fig. 10, where the coefficients of m0 = m1 = m3 = 0, m2 = 1, m4 ¼ �h0

2

=40, m5 = � h
03/60 are used.

The phase plots show that the improved scheme has better resolution than the fifth-order central and the
third-order upwind IDO schemes. The range of the wavenumber with PE < 1% is enlarged to w < 2.53 by using
these coefficients. The gain of the improved scheme is closer to the exact gain than that of the third-order
upwind IDO scheme. The optimization of the coefficients will be discussed in the next paper.
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5. Accuracy for diffusion equation

The one-dimensional diffusion equation,
of
ot
¼ j

o
2f

ox2
; ð5:1Þ
corresponds to Eq. (3.14) with u2 = j and the other coefficients um = 0. The differentiated equation of
Eq. (5.1) is also solved:
o2f
otox

¼ j
o3f
ox3

. ð5:2Þ
By using the fifth-order central IDO scheme, the coefficient matrix A (3.24) for the diffusion equation is defined
as
A11 A12

A21 A22

� �
¼

jAð2Þ jA0ð2Þ
jAð3Þ jA0ð3Þ

 !
¼

4l
Dt ðcos w� 1Þ �i lh

Dt sin w

i 15l
hDt sin w � 3l

Dt ðcos wþ 4Þ

 !
; ð5:3Þ
where l = jDt/h2 represents the diffusion number and Eqs. (3.8) and (3.9) are applied. The eigenvalues of the
matrix S (3.36) for the first-order explicit time integration, and for the two-, the three-, the four-stage Runge–
Kutta methods are illustrated in Fig. 11(a)–(d). The three- or the four-stage Runge–Kutta time integration
extends the range of the stable diffusion number in a similar way with the advection equation. The calculations
are stable up to l = 0.13 for the two-stage Runge–Kutta method, l = 0.16 for the three-stage method, and
l = 0.18 for the four-stage method. Implicit time integration makes the computation of the IDO scheme stable
comparably to FD schemes. Fig. 11(e) describes the eigenvalues for the first-order implicit time integration.
The eigenvalues are confirmed to be less than unity for the whole area.

The accuracy of the IDO scheme is compared to that of FD and CD schemes. For the amplification factor
(4.4) of the diffusion equation, the exact gain is given as follows:
jgnðwÞj ¼ e�lw2n. ð5:4Þ

The exact phase and the numerical phase for the central schemes are zero. The numerical error for the diffu-
sion equation is defined as
EðwÞ ¼ jgexact
n j

1
lw2n � jgnumerical

n j
1

lw2n

��� ���. ð5:5Þ



Wavenumber

i
D

ffu
s

eb
mun

noi
r

0 1 2 3
0.0

0.1

0.2

1.5

0.9 0.8 0.7
0.5

1.0

0.6

Wavenumber

i
D

ffu
s

eb
mun

no i
r

0 1 2 3
0.0

0.1

0.2

1.5

0.9 0.8 0.7 0.6

1.0

Wavenumber

i
D

ffu
s

eb
mun

noi
r

0 1 2 3
0.0

0.1

0.2

0.5

1.5

0.9

0.8
0.7

0.6

1.0

Wavenumber

i
D

ffu
s

eb
mun

noi
r

0 1 2 3
0.0

0.1

0.2

0.5

1.0

0.9

0.8

0.7

0.6

Wavenumber

i
D

ffu
s

eb
mun

noi
r

0 1 2 3
0

20

40

60

80

100

0.009

0.9

0.09

a b

c d

e
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The errors for n = 10 and l = 0.1 are shown in Fig. 12. This time step is chosen as the time when the Fourier
coefficient for the wavenumber w = 1 is attenuated by 1/e. The error for the IDO scheme possesses fourth-
order convergence, and the magnitude of the error is smaller than the other fourth-order schemes. For w >
1.35, the error becomes smaller than that of the sixth-order FD scheme.

6. Accuracy for Poisson equation

It is important to solve the Poisson equation in the case of incompressible flow analysis based on a semi-
implicit method such as the Marker-and-Cell (MAC) type method [18,19]. We show the numerical accuracy
for the one-dimensional Poisson equation,
o2f
ox2
¼ q. ð6:1Þ
The differentiated equation of Eq. (6.1) is required for calculating the first-order derivative:
o3f
ox3
¼ oq

ox
. ð6:2Þ
Using the approximations (2.2) and (2.3), these equations are discretized as follows:
2

h2
ðfjþ1 � 2f j þ fj�1Þ �

1

2h
ðfx;jþ1 � fx;j�1Þ ¼ qj; ð6:3Þ

15

2h3
ðfjþ1 � fj�1Þ �

3

2h2
ðfx;jþ1 þ 8f x;j þ fx;j�1Þ ¼ qx;j. ð6:4Þ
The numerical solutions of fj and fx,j can be obtained adopting relaxation procedures such as the Successive
Over Relaxation (SOR) method. Sakurai et al. showed that the Multi-Grid (MG) method [20,21] effectively
improves the convergence of the relaxation process and the red-black MG method is applicable to the parallel
computing in the same manner as the FD scheme.

When the exact solution is assume to be Eq. (3.3), the source terms of Eqs. (6.3) and (6.4) are determined as
qj ¼
X

k

� w
h

� �2

f̂ ðkÞeiwxj=h; ð6:5Þ

qx;j ¼
X

k

�i
w
h

� �3

f̂ ðkÞeiwxj=h. ð6:6Þ
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The Fourier coefficients of the numerical solutions f̂ nðkÞ and f̂ n
xðkÞ are satisfied with the following equations:
4 cos w� 4

h2

� �
f̂ nðkÞ þ �i sin w

h

� �
f̂ n

xðkÞ ¼ �
w
h

� �2

f̂ ðkÞ; ð6:7Þ

15i sin w

h3

� �
f̂ nðkÞ þ �12� 3 cos w

h2

� �
f̂ n

xðkÞ ¼ �i
w
h

� �3

f̂ ðkÞ; ð6:8Þ
where Eqs. (3.8) and (3.9) are applied. These equations lead to
f̂ nðkÞ ¼ w2ð12þ 3 cos wþ w sin wÞ
3ð12� 12 cos w� sin2 wÞ

f̂ ðkÞ ¼ T ðwÞf̂ ðkÞ; ð6:9Þ
where T is called the transfer function, which means the ratio of the numerical value to the exact one, and the
exact transfer function is unity. Fig. 13(a) illustrates the transfer functions for the IDO scheme, the FD
schemes, and the CD scheme. The transfer function of the IDO scheme is the closest to unity among these
schemes. Fig. 13(b) shows the error for the Poisson equation, estimated by
EðwÞ ¼ j1� T ðwÞj. ð6:10Þ

The IDO scheme gives fourth-order accurate solutions with smaller errors than the fourth-order FD and CD
schemes. The solutions of the IDO scheme are estimated more accurately than the sixth-order FD scheme for
wavenumbers w > 1.35.

7. Conclusions

We have evaluated the accuracy and stability of the IDO scheme by using Fourier analysis. The IDO
scheme is based on the Hermite interpolation functions constructed by both physical variables and spatial
derivatives with compact stencil. It is unique that the derivatives are obtained by solving the additional equa-
tions derived by the differentiation of governing equations. The eigenvalues for the Runge–Kutta time integra-
tion of the IDO scheme shows stable regions for the Courant number and the diffusion number. The effective
utilization of the Hermite interpolation function leads the phase speed in advection calculations to be highly
accurate for high wavenumbers, even beyond the sixth-order CCD scheme. In advection calculations by the
upwind IDO scheme, the numerical viscosity, which consists of the fourth- and the fifth-order derivatives,
stabilizes the time integration for wavenumbers near p. Not only for the advection equation but also for
the diffusion and the Poisson equations, the IDO scheme accurately resolves high wavenumbers in comparison
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with other schemes. It is expected that the high resolution characteristics of the IDO scheme for all the terms
of fluid flow equations is suitable for DNS of turbulent flows and also gives us better numerical results for
various PDEs.
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